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Abstract

Human linguistic capacity is often charac-
terized by compositionality and the general-
ization it enables—human learners can pro-
duce and comprehend novel complex ex-
pressions by composing known parts. Sev-
eral benchmarks exploit distributional con-
trol across training and test to gauge com-
positional generalization, where certain lex-
ical items only occur in limited contexts dur-
ing training. While recent work using these
benchmarks suggests that pretrained mod-
els achieve impressive generalization per-
formance, we argue that exposure to pre-
training data may break the aforementioned
distributional control. Using the COGS
benchmark of Kim and Linzen (2020), we
test two modified evaluation setups that con-
trol for this issue: (1) substituting context-
controlled lexical items with novel character
sequences, and (2) substituting them with
special tokens represented by novel embed-
dings. We find that both of these setups lead
to lower generalization performance in T5
(Raffel et al., 2020), suggesting that previ-
ously reported results have been overesti-
mated due to uncontrolled lexical exposure
during pretraining. The performance degra-
dation is more extreme with novel embed-
dings, and the degradation increases with
the amount of pretraining data, highlighting
an interesting case of inverse scaling.

1 An Issue in Testing Pretrained Models
for Compositional Generalization

Compositional generalization, the ability to pro-
duce and comprehend novel complex expressions
by composing known parts, has been considered
a key property of human cognitive and linguis-
tic capacity (Frege, 1923; Fodor and Pylyshyn,
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1988; Smolensky, 1991; Lake et al., 2017). This
ability is also desirable for coverage of long-tail
phenomena in practical applications such as se-
mantic parsing and question-answering (Finegan-
Dollak et al., 2018; Liu et al., 2021b). Composi-
tional generalization has traditionally been consid-
ered a challenge for neural network models (Fodor
and Pylyshyn, 1988; Hadley, 1994; Phillips, 1998;
van der Velde et al., 2004), and in this context,
benchmarks such as SCAN (Lake and Baroni,
2018), COGS (Kim and Linzen, 2020), CFQ (Key-
sers et al., 2020) and SyGNS (Yanaka et al., 2021)
have recently been proposed to evaluate models’
generalization capacity. These benchmarks moti-
vated active efforts for improvement and analysis
(Liu et al., 2021a; Jiang and Bansal, 2021; On-
tañon et al., 2022; Bogin et al., 2022; Jambor and
Bahdanau, 2022, i.a.). Among such work, some
report that models pretrained on context recon-
struction (typically, “language modeling”) such as
T5 (Raffel et al., 2020), mT5 (Xue et al., 2021),
CodeT5 (Wang et al., 2021) and pretrained convo-
lutional sequence-to-sequence (seq2seq) networks
achieve high generalization accuracy on SCAN
and COGS (Shaw et al., 2021; Tay et al., 2021;
Orhan, 2021).

A core property of many compositional gener-
alization benchmarks is the existence of distribu-
tional mismatches between training and general-
ization sets that can be overcome by composing
parts of the training examples in an appropriate
way. For example, the COGS training set contains
a sentence with the noun hedgehog appearing as a
part of a subject noun phrase (e.g., The hedgehog
saw the cat), and the generalization set contains
examples with hedgehog as a part of an object
noun phrase (e.g., The cat saw the hedgehog). Im-
portantly, sentences with hedgehog as a part of an
object noun phrase are absent from the training set,
which creates a distributional mismatch between
training and generalization. The primitive general-



ization split in SCAN exploits a similar idea: com-
plex examples containing certain primitives (e.g.,
jump) are withheld from the training set. Further-
more, there is often a limited exposure component
to the compositional generalization benchmarks:
there is only a limited number of examples that
expose the models to the context-controlled lex-
ical items like hedgehog. COGS limits the num-
ber of exposure examples to 1, and SCAN’s primi-
tive splits limit exposure to a single example at the
type-level (a single exposure example comprises
10% of the training set). This design is analo-
gous to, or sometimes explicitly takes motivation
from, human subject experiments that use nonce
words to test generalization. Importantly, the criti-
cal assumption of such experiments is that subjects
would not have encountered the nonce words prior
to the experiment, so that their exposure to those
words can be completely controlled.

One property that the aformentioned bench-
marks share is that the context-controlled lexical
items are real words of English like hedgehog
and jump. This poses no issue when a model is
trained only on the training sets of these bench-
mark datasets. However, if a model is trained on
any data additional to the benchmark’s training set,
it is no longer guaranteed that the distributional
control intended by the benchmark still holds, un-
less one inspects the additional data fully to ensure
that there are no examples of the type intended to
be withheld from training. To summarize, addi-
tional training data can violate the assumptions of
these benchmarks in the following ways:

• Lexical items that are intended to be
withheld from specific contexts (context-
controlled) are observed in such contexts
during pre/auxiliary training.

• Lexical items that are intended to have lim-
ited numbers of exposures are observed more
frequently during pre/auxiliary training.

Large pretrained models almost certainly fall un-
der these scenarios. For instance, it is unlikely that
there is no occurrence of hedgehog as a part of
an object noun phrase, no occurrence of jump as
a part of a complex expression, or no more than
1 occurrence of these context-controlled items in
the Colossal Clean Crawled Corpus (C4; Raffel
et al. 2020), the pretraining corpus of the T5 mod-
els commonly used in the literature to tackle these
generalization benchmarks.

We propose two modified evaluation setups
that control for this issue: (1) using as context-
controlled lexical items character sequences that
do not occur in the pretraining data (tokenized and
embedded via the model’s existing tokenization
process), or (2) directly using a single novel em-
bedding to initialize each context-controlled lex-
ical item. In the new experiments reported here,
under both setups, the pretrained T5 models per-
formed strictly worse than their performance on
the unmodified version of the COGS dataset. We
refer to this performance gap as overestimation
due to uncontrolled lexical exposure, shortened
as simply overestimation. Under setup (1), the
overestimation was between 14 and 19 percent-
age points. Under setup (2), the overestimation
was much larger at around 51 percentage points.
Under setup (2), the performance degradation was
inversely correlated with the amount of language
modeling pretraining data: pretrained models per-
formed worse than randomly initialized models of
the same architecture.

Overall, our results support the conclusion that
previously reported generalization performance of
pretrained models has been substantially overes-
timated, and furthermore highlight the surprising
sensitivity of the models’ generalization behavior
to the choice of the type of the context-controlled
lexical items.1

2 Proposed Modifications

In light of the issue raised in Section 1, we pro-
pose two modifications to the compositional gen-
eralization dataset and evaluation setup of Kim
and Linzen (2020) that guarantee the intended dis-
tributional control across training and generaliza-
tion. Although we focus on COGS as a case study
here, similar modification should be applicable to
SCAN or other tests that gauge generalization to
novel contextual usages of lexical items.

In the original COGS dataset, real English
words were used as context-controlled lexical
items (e.g., hedgehog, cockroach).2 Our proposal
is to replace these with either character sequences

1Code and data available at: https://github.com/
najoungkim/cogs-with-pretraining

2Note that there are broadly two types of generalization in
COGS: lexical (novel combination of a familiar lexical item
and a familiar linguistic structure) and structural (novel struc-
tures). We focus on lexical generalization, for which a benefit
of pretraining has been claimed in the literature, but see Ap-
pendix A for more discussion about structural generalization.

https://github.com/najoungkim/cogs-with-pretraining
https://github.com/najoungkim/cogs-with-pretraining


that do not appear in the pretraining data (e.g.,
bahufowu), or to replace them with special tokens
(e.g., [wn]3) that are newly added to the vocabu-
lary of the model being tested. Example replace-
ments are shown in (1):

(1) a. ORIG.: Emma liked the hedgehog .

; * hedgehog (x3); like.agent(x1,
Emma) AND like.theme(x1, x3)

b. MOD 1: Emma liked the bahufowu .
; * bahufowu (x3); like.agent(x1,
Emma) AND like.theme(x1, x3)

c. MOD 2: Emma liked the [w0] .
; * [w0] (x3); like.agent(x1, Emma)
AND like.theme(x1, x3)

We applied this substitution to both the input sen-
tence and the output logical form, substituting
each unique context-controlled item with a differ-
ent novel character sequence or a special token
represented by a novel embedding.

We tested two different approaches because the
proposed modifications have different pros and
cons, although they both provide control for lex-
ical exposure. In the case of character sequence
substitution, we need an additional step to verify
that these sequences indeed do not occur in the
pretraining data. This step may not always be
feasible if the pretraining corpus is inaccessible.
On the other hand, non-occurrence in the pretrain-
ing data is always guaranteed under the novel em-
beddings setup, since the replacement tokens are
novel entries in the models’ vocabulary, added af-
ter pretraining. However, adding new tokens re-
quires a modification to the model, leading to ad-
ditional experimental choices such as the initial-
ization scheme as we discuss in Section 4.

2.1 Test Set for Lexical Difficulty

Before we describe our main experiments, we
briefly introduce another test set, which we re-
fer to as a test set for lexical difficulty (TEST-
LEX). The original COGS dataset contains both
in-distribution test examples (TEST-ID) (2-b) and
out-of-distribution generalization examples (GEN)
(2-d). However, the original test set only contains
recombinations of non-context-controlled items as
in (2-b). This means there are no examples like

3The surface forms of the replacement tokens do not mat-
ter under this setup. The only requirement is that the tokens
selected do not already exist in the model’s vocabulary.

(2-c) in TEST-ID, where context-controlled items
appear in the same type of contexts as their expo-
sure examples in the training set (2-a) (e.g., differ-
ent examples with hedgehog as part of a subject
noun phrase when the training set already showed
hedgehog as a part of a subject noun phrase).

(2) a. TRAINING: The hedgehog/bahufowu
/[w0] ate the cake.
The girl saw the donut.

b. TEST-ID: The girl ate the cake.
c. TEST-LEX: The hedgehog/bahufowu

/[w0] ate the donut.
d. GEN (SUBJ-TO-OBJ): The girl saw

the hedgehog/bahufowu/[w0].

TEST-LEX consists of new in-distribution uses of
the context-controlled lexical items (n = 12, 000).
The goal is to better tease apart the difficulty of
processing less familiar lexical items (i.e., novel
character sequences or novel embeddings) from
the difficulty of bridging the distributional gap
across training and generalization through compo-
sition. Note that the latter difficulty only exists
in the generalization examples (2-d), whereas the
former exists in both the generalization (2-d) and
the TEST-LEX (2-c) examples.

3 Experiment 1: Novel Character
Sequences as Context-controlled
Lexical Items

3.1 Character Sampling
As discussed in Section 2, we modified the orig-
inal dataset by replacing context-controlled lex-
ical items with novel character sequences. We
sampled these sequences from the 26 lower-case
ASCII alphabet characters with replacement. We
furthermore varied this sampling process along
two dimensions that may affect generalization:
length and character distribution within the se-
quence (random sampling vs. alternating between
consonants and vowels). For length, we either
sampled shorter ([7–15) chars) or longer strings
([15–30) chars). Between the random sampling
and consonant-vowel alternation sampling, the lat-
ter is likelier to yield character sequences that are
closer to real lexical items of English (e.g., bahu-
fowu) than random sampling (e.g., dvalcxw), in
terms of transition probabilities between the char-
acters or subsequences that comprise the sampled
sequence. We crossed these two factors, length
(longer vs. shorter) and character distri-



Length Character distribution Example Gen. Test-ID Gen. (Lex. only) Test-Lex

Longer Random rkijtgjqamjtwsmcbi 0.681 (± 0.022) 0.998 0.786 (± 0.025) 0.783 (± 0.014)
Shorter Random dvalcxw 0.692 (± 0.016) 0.998 0.798 (± 0.019) 0.750 (± 0.030)
Longer CVCV tayutenotipevobe 0.690 (± 0.018) 0.998 0.795 (± 0.021) 0.739 (± 0.020)
Shorter CVCV bahufowu 0.642 (± 0.020) 0.998 0.740 (± 0.023) 0.699 (± 0.047)

No modification (replication of Orhan 2021) 0.833 0.998 0.963 0.973

Table 1: Generalization accuracy of T5-base trained on datasets with context-controlled lexical items replaced with
sampled character sequences. Gen. refers to accuracy on the full generalization set comparable to performance
reports in the literature. Gen. (Lex. only) lists the performance on the lexical generalization portion of the dataset,
excluding structural generalization, for fair comparison to Test-Lex that only contains lexical generalization. Stan-
dard deviations over five random seeds are shown if greater than 0.01.

bution (random vs. CVCV), to create four dif-
ferent sets of novel character sequences. Then
we replaced the context-controlled lexical items
with the sampled sequences to create four modi-
fied datasets (see Table 1 for examples).

While these sampled sequences are less likely to
occur in the pretraining data than real words like
hedgehog, it is not guaranteed that they are com-
pletely absent. As an additional verification step,
we searched through the C4 corpus4 to ensure that
the sampled sequences are absent from the data
that the models we tested (the T5 series) were pre-
trained on.

3.2 Model and Training

We used the T5-base model, which was pretrained
on 1 trillion tokens of English text from the C4
corpus. We used the codebase from Orhan (2021)
that had reported the best pretrained model perfor-
mance at the time of the experiment (around 83%
generalization accuracy). We finetuned T5-base
for a large fixed number of steps (300K, ∼398
epochs) without early stopping, following the ob-
servation of Csordás et al. (2021) that generaliza-
tion may continue to improve even when develop-
ment set performance saturates.5 Other hyperpa-
rameters were kept equal to Orhan (2021) (batch
size=32, AdamW optimizer, linear scheduling) ex-
cept for the learning rate that was tuned based on

4https://c4-search.apps.allenai.org/
5Note that, for fair evaluation, we did not tune the number

of steps based on generalization set performance. We selected
a sufficiently large number of steps that led to near-perfect
(≥98%) development set accuracy in most model variations
we tested, as well as 100% accuracy on the exposure exam-
ples in the training set. Learning the exposure examples in
the training set like (2-a) that contains the context-controlled
lexical items is critical, because it is a precondition to expect
any generalization involving those items.

exposure example accuracy and development set
performance (lr ∈ {1 × 10−3, 1.5 × 10−5}). We
finetuned the model 5 times varying the random
seed. Each finetuning run took around 48 hours
on a single RTX8000 GPU including development
set evaluation at every 5000 steps.

Tokenization. We used the Huggingface imple-
mentation of the T5 tokenizer, which is based
on SentencePiece (Kudo and Richardson, 2018).
Therefore, the character sequences replacing the
context-controlled lexical items were tokenized
into subword tokens, which include both single-
and multi-character tokens.

3.3 Results

The results are presented in Table 1. The gener-
alization performance of the models using charac-
ter sequences as context-controlled lexical items
was 64–69%. This is 14–19 percentage points
lower than results obtained with the unmodified
COGS dataset (∼83%). This is evidence that
uncontrolled lexical exposure discussed in Sec-
tion 1 does indeed lead to an overestimation of
generalization performance. Interestingly, the per-
formance across different lengths and sampling
strategies was similar. This shows that the mod-
els remained robust to lexical items that deviate
from typical lexical items of English, successfully
learning to treat each as a coherent unit.

4 Experiment 2: Novel Embeddings as
Context-controlled Lexical Items

We repeated the evaluation using the second
setup proposed in Section 2 with novel embed-
dings added directly to the model’s vocabulary as
context-controlled lexical items.

https://www.tensorflow.org/datasets/catalog/c4
https://c4-search.apps.allenai.org/
https://huggingface.co/transformers/model_doc/t5.html#t5tokenizer


Embedding init. Gen. Test-ID Gen. (Lex. only) Test-Lex Training steps

rand 0.323 (± 0.060) 0.998 0.368 (± 0.071) 0.793 (± 0.033) 300K
avg 0.060 0.999 0.070 0.379 (± 0.013) 300K

Unused embeddings 0.059 0.999 0.068 0.404 (± 0.024) 300K

No modification 0.833 0.998 0.963 0.973 60K

Table 2: Generalization accuracy of T5-base with context-controlled lexical items represented by novel embed-
dings. No modification results are repeated from Table 1. Standard deviations are shown if greater than 0.01.

4.1 Model and Training

As before, we finetuned the pretrained T5-base
model on the modified training set of COGS,
but this time added the tokens that replaced the
context-controlled lexical items to the model vo-
cabulary. The hyperparameters were kept the same
except for the learning rate that was tuned based
on exposure example accuracy and development
set performance (lr = 1.5 × 10−5). Finetuning
was run 5 times with different random seeds, and
each finetuning run took around 48 hours on a sin-
gle RTX8000 GPU including intermediate devel-
opment set evaluation at every 5000 steps.

New vocabulary. We added new embeddings to
the model vocabulary before the finetuning step.
Each unique context-controlled lexical item was
first replaced with a special token [wn] (|n|=21),
each of which was assigned a new embedding. We
tested three initialization schemes for these new
embeddings: the default random normal initializa-
tion of the Huggingface T5 (random), the aver-
age of existing embeddings (avg) with noise (sug-
gested by Hewitt (2021) as a way to alleviate the
divergence of the novel embeddings from existing
pretrained embeddings), and unused embeddings
in the embedding layer of the model.6

Tokenization. We used the same tokenizer as in
Experiment 1 except for the newly added tokens.
We note that T5’s tokenizer treats whitespaces
as characters rather than tokenization boundaries,
and there exist unexpected decoding behaviors
concerning whitespaces and added tokens in the
version of the tokenizer we used. We log the de-
tails and potential issues in Appendix B for refer-
ence in future work.

6Leftover embeddings that were never used dur-
ing training: https://github.com/huggingface/
transformers/issues/4875.

4.2 Results

The results (Table 2) show that the compositional
generalization accuracy of the pretrained models
was very poor under this setup of using novel
embeddings. Both average and unused embed-
dings averaged around 6% generalization accu-
racy. Random initialization yielded the best re-
sults, but still quite poor at around 32%. This
sets a more dramatic lower bound to the compo-
sitional generalization performance of pretrained
T5 models, indicating about 51 percentage point
overestimation compared to the setting in which
the original dataset was used without modifica-
tion (∼83%). This low performance contrasts with
models trained using novel character sequences as
context-controlled lexical items (∼68%, Table 1).
This large variation in generalization across differ-
ent evaluation setups can only be attributed to how
the context-controlled lexical items are embedded,
since this is the only difference between the eval-
uation setups.

Are the models simply incapable of producing
novel tokens? One possibility that can lead to
the low generalization performance of pretrained
models is if the novel tokens added to the vocab-
ulary are never produced because models consis-
tently assign them low probabilities compared to
existing tokens. In every experiment, we ensured
that the models perfectly learned the exposure ex-
amples that contain the novel tokens, as mentioned
in Footnote 5. This means at least for the train-
ing examples, the models were capable of learning
and producing the novel tokens without issue. Fur-
thermore, the models generally had no problem
with producing the novel tokens even outside of
these particular training examples. In fact, ∼97%
of the model predictions for lexical generalization
contained at least one novel token, as they should,
although the prediction itself was still incorrect.
Therefore, the low performance of these models
cannot be attributed to a total incapacity to pro-

https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
https://github.com/huggingface/transformers/issues/4875
https://github.com/huggingface/transformers/issues/4875


# tokens in pretraining data Gen. Test-ID Gen. (Lex. only) Test-Lex |Test-Lex−Gen. Lex| Data Source

0 (No pretraining) 0.749 (± 0.026) 0.994 0.874 (± 0.030) 0.902 (± 0.024) 0.028 -
1M 0.678 (± 0.069) 0.994 0.791 (± 0.080) 0.834 (± 0.064) 0.043 Wikipedia
5M 0.602 (± 0.045) 0.991 0.703 (± 0.053) 0.727 (± 0.035) 0.025 Wikipedia

25M 0.538 (± 0.033) 0.985 0.628 (± 0.038) 0.652 (± 0.069) 0.024 Wikipedia
50M 0.516 (± 0.027) 0.989 0.602 (± 0.031) 0.686 (± 0.042) 0.084 Wikipedia
100M 0.787 (± 0.003) 0.999 0.918 (± 0.003) 0.942 (± 0.015) 0.024 Wikipedia

1B 0.722 (± 0.036) 0.999 0.842 (± 0.042) 0.883 (± 0.029) 0.041 Wikipedia
1T (Full T5-small) 0.279 (± 0.026) 0.999 0.326 (± 0.030) 0.802 (± 0.070) 0.478 C4
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Table 3: Generalization accuracy of T5-small models pretrained on different amounts of data, with context-
controlled lexical items represented by randomly initialized novel embeddings. Standard deviations are shown
if greater than 0.01. The x-axis shows the number of tokens in symmetrical log scale to include 0 in the plot.

duce newly added tokens.

Poor generalization cannot be reduced to lex-
ical difficulty. The performance on TEST-LEX

(Section 2.1) provides more insights into the
source of the large performance degradation. The
models did struggle more on TEST-LEX (38–
79%) than on the original TEST-ID which con-
tains no context-controlled items (∼99%). This
discrepancy within in-distribution tests shows that
rare lexical items are challenging, which likely
accounts for some portion of the generalization
degradation we observe. However, the target com-
positional generalization set performance is im-
pacted over and above this degradation due to
lexical difficulty: there is a further gap between
TEST-LEX and GEN. (LEX. ONLY) (38–79% vs.
6–32%). These two evaluation sets are equivalent
in that they contain context-controlled items, but
differ in terms of their contextual difficulty. There-
fore, the lower accuracy in the generalization set
must derive from contextual difficulty rather than
lexical difficulty.

5 Experiment 2+: Effect of Pretraining
Corpus Size on Generalization

Experiment 2 showed that the generalization
performance of T5 was extremely poor when
novel embeddings were used to represent context-
controlled lexical items. In this follow-up ex-
periment, we investigate if we can attribute the
low generalization performance specifically to the
amount of data the model has been exposed to.
We approach this question by comparing multiple
models of the same architecture that vary only in
the amount of pretraining data, including a model
without any pretraining.

5.1 Model and Training

We used the T5-small model for this experiment.7

We first randomly initialized the T5-small model
and pretrained it on varying amounts of data us-
ing the span corruption objective: 0 (i.e., not pre-

7The choice of T5-small over other larger variants such
as T5-base from the previous experiments is due to resource
constraints. Note that the difference in generalization perfor-
mance between fully pretrained T5-small and T5-base under
the novel embeddings setup is marginal (7.6% vs. 5.9%).



trained), 1M, 5M, 25M, 50M, 100M, and 1B to-
kens. We used 10% of the datasets as develop-
ment sets to determine early stopping points with
a patience of 5. Then, we finetuned each model on
COGS, using the novel embeddings setup in Ex-
periment 2. We used English Wikipedia instead
of C4 for pretraining due to resource limitations in
running the preprocessing pipeline of C4.

Finetuning was run 5 times for each model us-
ing different random seeds for 500K steps—the
number of steps sufficient for the models to learn
the exposure examples perfectly and achieve near-
perfect in-distribution development set accuracy.
The learning rate was tuned based on development
set performance, and other hyperparameters were
the same as Experiment 2. Finetuning took around
30 hours on a single RTX8000 GPU including
intermediate development set evaluation at every
5000 steps. We used random initialization for the
novel embeddings, since rand and avg did not
differ meaningfully in Experiment 2.

5.2 Results

Table 3 shows the generalization accuracy of T5-
small models pretrained with varying amounts of
data.8 First of all, a fully pretrained model per-
formed much worse than a randomly initialized
model of the same architecture (28% vs. 75%),
demonstrating a negative impact of pretraining un-
der the novel embeddings setup. Overall, general-
ization performance is negatively correlated with
the amount of pretraining data (Spearman’s ρ =
−0.29, p = .07). Importantly, the gap between
TEST-LEX and the lexical portion of the general-
ization set (|Test-Lex−Gen. Lex|) increased with
the amount of training data (r = 0.45, p < .01).
This demonstrates that the capacity to handle con-
textual novelty through composition is damaged
by pretraining under the novel embeddings setup,
over and above the general adverse effect on the
processing of novel tokens, as discussed in Sec-
tion 4.2. This finding illustrates an interesting case
of inverse scaling9 in the T5 series.

8The randomly initialized T5-small generalized better
than T5-base, which replicates the finding in Orhan (2021)
that larger models are harder to train from scratch on COGS.

9Cases in which task performance gets worse as pa-
rameters, compute, and/or data size increase: https://
github.com/inverse-scaling/prize.
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Figure 1: Highly variable generalization performance
of T5-base under different modifications proposed in
this paper. Best reported performance using T5-base
from Orhan (2021) is marked with a red dotted line.
Overestimation refers to the difference between this
red dotted line and the blue bars.

6 Discussion

We have shown through a series of experiments
that the compositional generalization performance
reported in the literature using pretrained models,
in particular T5, is likely overestimated. In ad-
dition to this general conclusion, one surprising
finding is that the choice of context-controlled lex-
ical items had a large impact on the generaliza-
tion outcomes (Figure 1), despite the models being
extensively finetuned. Using character sequences
(Experiment 1) and novel embeddings (Experi-
ment 2) led to dramatically different generaliza-
tion performance, even though the only difference
across these experiment setups was the form of the
context-controlled items.

This sensitivity to lexical initialization when all
exposure examples are perfectly learned would not
arise in models that generalize systematically—
if they have learned to assign a correct meaning
representation to John saw Mary, then Mary saw
John should also be correctly mapped to the cor-
rect meaning representation. In a truly systematic
model that operates on the basis of “operations
on symbols” or “algebraic manipulation” (Newell,
1980; Pylyshyn, 1980; Fodor and Pylyshyn, 1988;
Marcus, 2001), we would observe similar degrees
of success across all variations of the experiments
in this paper. However, this was not the case with
the models we tested. Is this a problem?

Arguably, novel character sequences cover a
large portion of expected downstream instances in
which lexical generalization will be required from
models such as T5. While we observed a non-

https://www.tensorflow.org/datasets/catalog/wikipedia
https://github.com/inverse-scaling/prize
https://github.com/inverse-scaling/prize


trivial amount of overestimation under this setup,
the performance remained competitive, some-
times even outperforming approaches designed
to tackle compositional generalization specifically
(e.g., Conklin et al. 2021). The models were also
robust to the length and sampling strategy of the
character sequences, suggesting that they can treat
arbitrary character sequences as a coherent unit.

Even if we consider human generalization ca-
pacity as a reference point, the experimental con-
ditions under which empirical evidence for human
generalization have been obtained seem similar to
this setup. In human subject experiments that test
similar types of generalization, nonce words like
gorp, mib, and pilk (which obey the phonotactics
of the target language, here English) often play
the role of context-controlled lexical items (e.g.,
Olguin and Tomasello 1993; Kline and Demuth
2014). This seems most comparable to the shorter
CVCV sampling case in Experiment 1, in terms
of the properties of the nonce words. It is unclear
as of now what the analogous setup to Experiment
2 (novel embeddings) would be in human learn-
ers, but this is an interesting question for future
work investigating the human capacity for compo-
sitional generalization.

In light of this discussion, we believe that the
choice of evaluation should be informed by the
research question one wishes to address. If the
question is about robustness to average out-of-
vocabulary encounters in the wild, the character
sequence substitution approach seems sufficient.
However, if one’s downstream use case involves
training novel embeddings (e.g., novel entities,
ontological changes), robustness to novel embed-
dings would be critical. Finally, the goal may be
scientific: investigating whether a certain neural
network underlyingly implements a classical sym-
bolic system (in the sense of McLaughlin 1993
and others) by probing for generalization that is in-
variant to the choice of lexical initialization. Here,
one may consider a wider range of experiments,
including both methods we proposed and possibly
others, and test whether generalization is stable.

We note that we do not engage in broader dis-
cussions about whether generalization in human
learners is actually achieved on the basis of ab-
stract symbolic manipulation, whether this kind
of capacity is a precondition to intelligence, or
whether this ought to be the kind of model that
we should be building. Our points are as fol-

lows: (1) it is good practice to spell out what ca-
pacity one wants to probe through benchmarks,
and to adopt a setup that aligns with the research
question, and (2) in any case, directly evaluat-
ing pretrained models on compositional general-
ization tests that depend on lexical control without
implementing adequate control measures is mis-
leading.10 We once again invoke the analogy to
human nonce word experiments: imagine that the
famous wug test (Berko, 1958) was in the form of
This is a slug. Now there are two of them. There
are two __., with the real word slug in place of
wug. Even if a subject produces the expected end-
ing /z/, this result cannot serve as evidence for the
existence of an abstract pluralization rule, because
prior observations of slugs could have been re-
trieved from memory. The same analogy applies
to using real words as context-controlled lexical
items in compositional generalization benchmarks
when pretrained models are being tested.

7 Related Work

Methodologically, this work is closest to ap-
proaches that make use of novel embeddings to
evaluate the generalization capacity of pretrained
models (Kim and Smolensky, 2021; Petty et al.,
2022). More broadly, this work has connections to
discussions about the implications of lexical rep-
resentation and tokenization in Natural Language
Processing (Domingo et al., 2018; Mielke et al.,
2021; Xue et al., 2022, i.a.).

Regarding compositional generalization, our

10One may argue that since the compositional generaliza-
tion task is distinct from the pretraining task or other possible
auxiliary tasks, it follows that maintaining the intended distri-
butional gap between training and generalization at finetun-
ing time suffices. Our view is that enforcing distributional
control at finetuning time only is addressing a different re-
search question, namely whether models can adapt to a spe-
cific finetuning task under distribution shift of certain lexical
items. The original tests intend to evaluate generalizations
that rely on the underlying linguistic system inherently con-
necting certain expressions (e.g., X saw Y) to others (e.g., Y
saw X), so as to allow for the application of compositional
rules even in the absence of observing the relevant expres-
sions directly (e.g., knowing what X saw Y means entails be-
ing able to generalize to Y saw X despite never having en-
countered this expression). This question cannot be correctly
posed if any explicit evidence about the target generaliza-
tions, purely distributional (in the language modeling sense)
or otherwise, is provided in addition to the training data of the
benchmark tests. This is an argument based on principle, but
this work can also be viewed as empirically testing whether
uncontrolled lexical exposure does in fact have a substantial
impact on models’ generalization behavior.



findings potentially impact the interpretation of a
large body of existing work in this domain that
uses pretrained models (Furrer et al., 2020; Tay
et al., 2021; Shaw et al., 2021; Orhan, 2021; Qiu
et al., 2021; Zhu et al., 2021; Herzig et al., 2021;
Qiu et al., 2022; Zheng and Lapata, 2022; Drozdov
et al., 2022, i.a.), where the benefit of pretraining
is most prominent for lexical generalization.

In general, lexical generalization is known to be
less challenging for contemporary neural networks
(a stronger statement from Weißenhorn et al. 2022:
“lexical generalization is essentially a solved prob-
lem for seq2seq models”). There are several
almost-perfect solutions for lexical generalization
that do not rely on pretraining (Bergen et al., 2021;
Akyürek and Andreas, 2021), the solutions some-
times being as simple as changing the training
configurations of vanilla seq2seq models (Csor-
dás et al., 2021). In this context, the current work
highlights a new difficulty concerning lexical gen-
eralization: reconciling pretraining and robustness
to the choice of lexical initialization.

8 Conclusion

Compositional generalization benchmarks such as
SCAN and COGS are often used to evaluate pre-
trained models. We have shown that the interpre-
tation of such experiments can be complicated by
the fact that pretrained models likely violate the
control for lexical exposure that these benchmarks
depend on to measure generalization. We have
proposed modifications based on lexical substitu-
tion to remedy this issue and presented empirical
results on how these modifications affect the gen-
eralization outcomes, using the COGS dataset as
a testbed. The results indicate that the general-
ization performance of the T5 model drops sig-
nificantly compared to previously reported results
(83% → 6–68%) when trained on the version of
the dataset with the proposed modifications. This
shows that there is a measurable effect of uncon-
trolled lexical exposure. When evaluated with-
out adequate control measures, pretrained models
likely have observed the key lexical items during
pretraining many times, and possibly also as parts
of constructions that these lexical items should be
withheld from, which leads to overestimated gen-
eralization performance.

The degree of performance degradation greatly
varied depending on the lexical substitution strat-
egy adopted in the two proposed control se-

tups. With character sequences, the performance
gap with was around 14–19 percentage points,
whereas with novel embeddings, the gap was as
large as 51 points. Furthermore, we found that
in the novel embeddings case, randomly initial-
ized models substantially outperformed pretrained
models. This harmful effect of pretraining con-
trasts with previously reported benefits of pretrain-
ing for compositional generalization (e.g., Tay
et al. 2021; Orhan 2021).

How should we interpret this high variance of
results across different control methods, and how
should we move forward with using compositional
generalization benchmarks to evaluate pretrained
models? We argue that there is no one-fits-all so-
lution, and the right evaluation depends on one’s
research question. For example, if what is be-
ing evaluated is a truly systematic generalization
that does not depend on specific choice of lexi-
cal items, the T5 models we tested did not show
this kind of a robust capacity. If what is being
evaluated is the capacity to generalize in expected
use case scenarios covered by subword-based rep-
resentations, the models we tested showed some
degree of success, albeit their generalization per-
formance being significantly lower than what has
been previously reported.
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A What about Structural
Generalization?

Even with our proposed modification, the distribu-
tional control for structural generalization (gen-
eralization to unseen structures, e.g., to deeper de-
grees of embedded structures) cannot be guaran-
teed without full structural inspection of the pre-
training data. For example, we would have to re-
move all examples containing 3+ nested preposi-
tional phrases from the pretraining data. Imple-
menting this control is especially challenging un-
der a common scenario where the model’s pre-
training data is not publicly available or difficult to
inspect due to its size (e.g., models trained on all of
Wikipedia, models trained on BooksCorpus which
is no longer publicly available, models trained on
company-internal data). Furthermore, retraining
the models on the dataset with target structures re-
moved would pose additional challenges.

In the case of generalization to deeper degrees
of embedding, it is reasonably likely that embed-
dings of depth≥ 6 would not occur in the pretrain-
ing data (Karlsson, 2010), but this is only specu-
lative. We leave the issue of enforcing distribu-
tional control for structural generalization for pre-
trained models to future work, but note that there is
no known meaningful benefit of language model-
ing pretraining alone for structural generalization
even under the uncontrolled setting. Most of the
known gains have been lexical; for instance, Ta-
ble 4 shows that structural generalization accuracy
of T5 finetuned on unmodified COGS is very poor.

Model Gen. (all) Lexical Structural

T5-base (rand.) 0.439 0.511 0
T5-base 0.833 0.963 0.053

T5-large 0.832 0.971 0
T5-xl 0.711 0.829 0.001
T5-xxl 0.836 0.974 0.006

Table 4: Generalization accuracy of T5 models without
applying any modification. The larger T5 models are
from finetuning the publicly available checkpoints of
T5 v1.1, and were run with the help of Santiago On-
tañón.

B Tokenization for Added Vocabulary

Here, we document the issues that we encoun-
tered while implementing the vocabulary expan-
sion using the Huggingface version of T5, which
potentially causes problems with the exact string
match metric because of misligned whitespaces.
There are two available tokenizers compatible
with this implementation, T5TokenizerFast and
T5Tokenizer. Our goal is to add tokens of the form
‘[w0]’ to the model. Since whitespace is consid-
ered a character, ‘[w0]’ and ‘ [w0]’ are considered
to be different tokens. To achieve the intended be-
havior in the model we used, the following needs
to be done.
T5TokenizerFast: either (1) both whitespace
prepended ( [w0]) and bare ([w0]) versions of the
token should be added to the tokenizer, IN THIS
ORDER, or (2) when the context-controlled lexi-
cal items are replaced at the dataset level, we can
replace the sequence-initial context-controlled to-
kens with the whitespace prepended version and
add only this version to the tokenizer. We provide
more detailed descriptions of the possible scenar-
ios:

1. If only the bare version is added, the whites-
pace before the novel token will be dropped
at decoding time, leading to erroneous spac-
ing sequence-medially.

2. If only the whitespace prepended version is
added, sequence-initial novel tokens will not
be tokenized as a single token (e.g., [w0] ->
‘[’, ‘w’, ‘_’, ‘0’, ‘]’).

3. If both are added but in reverse order (bare
then whitespace), sequence-medial novel to-
kens will be tokenized as the bare version,
and the whitespace originally preceding this
token will be lost at decoding time.

4. If sequence-initial tokens are replaced with
the whitespace prepended version in the
dataset itself, we will get the desired behav-
ior by just adding the whitespace prepended
version to the tokenizer.

T5Tokenizer: just adding the bare version or both
whitespace prepended & bare versions in any or-
der works, but just adding the bare version has
caveats. Just adding the whitespace prepended
version must be avoided.

1. Even if only the bare version is added, the
whitespace before the novel token that oc-
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curs sequence-medially will not be lost at
decoding time. Hence, this will not cause
issues with exact match evaluation. How-
ever, the actual tokenization will still not have
the prepended whitespace, which is different
from how typical sequence-medial tokens are
treated in T5. So perhaps, adding both ver-
sions is a better approach.

2. If only the whitespace prepended version is
added, sequence-initial novel token will not
be tokenized as a single token as in the case
of T5TokenizerFast.

We used T5TokenizerFast with the 4th option
listed above, but also sanity checked that there is
no substantial performance gap between valid op-
tions. Also note that although whitespaces in T5
tokenizers are represented by ‘\u2581’, in some
versions of the tokenizer, when adding a whites-
pace prepended token to the tokenizer, only ‘ ’ in-
stead of ‘\u2581’ will lead to intended behaviors.
In such versions, if ‘\u2581’ is used, the tokenizer
will not correctly tokenize the novel tokens and
they will be subword tokenized.


